3.295 \(\int \sec ^n(e+f x) (1+\sec (e+f x))^{3/2} \, dx\)

Optimal. Leaf size=98 \[ \frac {2 (4 n+1) \tan (e+f x) \, _2F_1\left (\frac {1}{2},1-n;\frac {3}{2};1-\sec (e+f x)\right )}{f (2 n+1) \sqrt {\sec (e+f x)+1}}+\frac {2 \sin (e+f x) \sec ^{n+1}(e+f x)}{f (2 n+1) \sqrt {\sec (e+f x)+1}} \]

[Out]

2*sec(f*x+e)^(1+n)*sin(f*x+e)/f/(1+2*n)/(1+sec(f*x+e))^(1/2)+2*(1+4*n)*hypergeom([1/2, 1-n],[3/2],1-sec(f*x+e)
)*tan(f*x+e)/f/(1+2*n)/(1+sec(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 98, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {3814, 21, 3806, 65} \[ \frac {2 (4 n+1) \tan (e+f x) \, _2F_1\left (\frac {1}{2},1-n;\frac {3}{2};1-\sec (e+f x)\right )}{f (2 n+1) \sqrt {\sec (e+f x)+1}}+\frac {2 \sin (e+f x) \sec ^{n+1}(e+f x)}{f (2 n+1) \sqrt {\sec (e+f x)+1}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[e + f*x]^n*(1 + Sec[e + f*x])^(3/2),x]

[Out]

(2*Sec[e + f*x]^(1 + n)*Sin[e + f*x])/(f*(1 + 2*n)*Sqrt[1 + Sec[e + f*x]]) + (2*(1 + 4*n)*Hypergeometric2F1[1/
2, 1 - n, 3/2, 1 - Sec[e + f*x]]*Tan[e + f*x])/(f*(1 + 2*n)*Sqrt[1 + Sec[e + f*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 65

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x)^(n + 1)*Hypergeometric2F1[-m, n +
 1, n + 2, 1 + (d*x)/c])/(d*(n + 1)*(-(d/(b*c)))^m), x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (Inte
gerQ[m] || GtQ[-(d/(b*c)), 0])

Rule 3806

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(a^2*d*
Cot[e + f*x])/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]]), Subst[Int[(d*x)^(n - 1)/Sqrt[a - b*x], x]
, x, Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0]

Rule 3814

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(b^2*
Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n)/(f*(m + n - 1)), x] + Dist[b/(m + n - 1), Int[(a
 + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n*(b*(m + 2*n - 1) + a*(3*m + 2*n - 4)*Csc[e + f*x]), x], x] /; Fr
eeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1] && NeQ[m + n - 1, 0] && IntegerQ[2*m]

Rubi steps

\begin {align*} \int \sec ^n(e+f x) (1+\sec (e+f x))^{3/2} \, dx &=\frac {2 \sec ^{1+n}(e+f x) \sin (e+f x)}{f (1+2 n) \sqrt {1+\sec (e+f x)}}+\frac {2 \int \frac {\sec ^n(e+f x) \left (\frac {1}{2}+2 n+\left (\frac {1}{2}+2 n\right ) \sec (e+f x)\right )}{\sqrt {1+\sec (e+f x)}} \, dx}{1+2 n}\\ &=\frac {2 \sec ^{1+n}(e+f x) \sin (e+f x)}{f (1+2 n) \sqrt {1+\sec (e+f x)}}+\frac {(1+4 n) \int \sec ^n(e+f x) \sqrt {1+\sec (e+f x)} \, dx}{1+2 n}\\ &=\frac {2 \sec ^{1+n}(e+f x) \sin (e+f x)}{f (1+2 n) \sqrt {1+\sec (e+f x)}}-\frac {((1+4 n) \tan (e+f x)) \operatorname {Subst}\left (\int \frac {x^{-1+n}}{\sqrt {1-x}} \, dx,x,\sec (e+f x)\right )}{f (1+2 n) \sqrt {1-\sec (e+f x)} \sqrt {1+\sec (e+f x)}}\\ &=\frac {2 \sec ^{1+n}(e+f x) \sin (e+f x)}{f (1+2 n) \sqrt {1+\sec (e+f x)}}+\frac {2 (1+4 n) \, _2F_1\left (\frac {1}{2},1-n;\frac {3}{2};1-\sec (e+f x)\right ) \tan (e+f x)}{f (1+2 n) \sqrt {1+\sec (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.46, size = 83, normalized size = 0.85 \[ \frac {\tan \left (\frac {1}{2} (e+f x)\right ) \sqrt {\sec (e+f x)+1} \sec ^n(e+f x) \left ((4 n+1) \cos ^{n+\frac {1}{2}}(e+f x) \, _2F_1\left (\frac {1}{2},n+\frac {3}{2};\frac {3}{2};2 \sin ^2\left (\frac {1}{2} (e+f x)\right )\right )-1\right )}{f n} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[e + f*x]^n*(1 + Sec[e + f*x])^(3/2),x]

[Out]

((-1 + (1 + 4*n)*Cos[e + f*x]^(1/2 + n)*Hypergeometric2F1[1/2, 3/2 + n, 3/2, 2*Sin[(e + f*x)/2]^2])*Sec[e + f*
x]^n*Sqrt[1 + Sec[e + f*x]]*Tan[(e + f*x)/2])/(f*n)

________________________________________________________________________________________

fricas [F]  time = 0.67, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\sec \left (f x + e\right )^{n} {\left (\sec \left (f x + e\right ) + 1\right )}^{\frac {3}{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^n*(1+sec(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral(sec(f*x + e)^n*(sec(f*x + e) + 1)^(3/2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sec \left (f x + e\right )^{n} {\left (\sec \left (f x + e\right ) + 1\right )}^{\frac {3}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^n*(1+sec(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate(sec(f*x + e)^n*(sec(f*x + e) + 1)^(3/2), x)

________________________________________________________________________________________

maple [F]  time = 0.99, size = 0, normalized size = 0.00 \[ \int \left (\sec ^{n}\left (f x +e \right )\right ) \left (1+\sec \left (f x +e \right )\right )^{\frac {3}{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)^n*(1+sec(f*x+e))^(3/2),x)

[Out]

int(sec(f*x+e)^n*(1+sec(f*x+e))^(3/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sec \left (f x + e\right )^{n} {\left (\sec \left (f x + e\right ) + 1\right )}^{\frac {3}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^n*(1+sec(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate(sec(f*x + e)^n*(sec(f*x + e) + 1)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (\frac {1}{\cos \left (e+f\,x\right )}+1\right )}^{3/2}\,{\left (\frac {1}{\cos \left (e+f\,x\right )}\right )}^n \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/cos(e + f*x) + 1)^(3/2)*(1/cos(e + f*x))^n,x)

[Out]

int((1/cos(e + f*x) + 1)^(3/2)*(1/cos(e + f*x))^n, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (\sec {\left (e + f x \right )} + 1\right )^{\frac {3}{2}} \sec ^{n}{\left (e + f x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)**n*(1+sec(f*x+e))**(3/2),x)

[Out]

Integral((sec(e + f*x) + 1)**(3/2)*sec(e + f*x)**n, x)

________________________________________________________________________________________